

Embedded

A Path Forward to Intrusive Sensitivity Analysis, Uncertainty Quantification and Optimization

Eric Phipps Optimization and Uncertainty Quantification Department Sandia National Laboratories

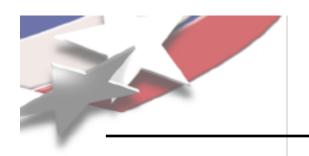
Albuquerque, NM USA

etphipp@sandia.gov

NEAMS VU Workshop April 7-8, 2009

The Challenge For Embedded Methods

- Embedded/Intrusive Methods:
 - Exploiting simulation code structure for improved performance (speed, accuracy, robustness,...)
 - Requiring more information from code beyond repeated simulation
- Performance advantages often remarkable
 - Intrusiveness into code often also significant
- Bridging the gap between algorithms research and applications is the challenge
 - Requires significant effort and foresight of code developers
 - A priori unclear which, if any, methods will significantly impact application
- A path forward is necessary that
 - Enables a wide variety of important embedded methods
 - Eases burden on simulation code developers



Overview

- Sensitivity Analysis
 - Forward & Adjoint methods
- Uncertainty Quantification
 - Stochastic Galerkin
 - Adjoint
- Optimization
 - NAND to SAND
- A path forward
 - Code interfaces
 - Automatic Differentiation

Mathematical Model

$$egin{aligned} 0 &= f(\dot{u}(t), u(t), p, t), \;\; t \in [t_0, t_f] \ u(t_0) &= u_0(p) \ \dot{u}(t_0) &= \dot{u}_0(p) \ v(p) &= \int_{t_0}^{t_f} g(\dot{u}(t), u(t), p, t) dt + h(\dot{u}(t_f), u(t_f), p) \end{aligned}$$

Steady-State Embedded Sensitivity Analysis

$$f(u,p) = 0, \quad v(p) = h(u,p)$$

Forward sensitivities

$$rac{\partial v}{\partial p} = rac{\partial h}{\partial u} \left(-rac{\partial f}{\partial u}^{-1} rac{\partial f}{\partial p}
ight) + rac{\partial h}{\partial p}$$

- Cost scales with number of parameters
- Solve system Jacobian

Adjoint sensitivities

$$\left(rac{\partial v}{\partial p}^T = rac{\partial f}{\partial p}^T \left(-rac{\partial f}{\partial u}^{-T} rac{\partial h}{\partial u}^T
ight) + rac{\partial h}{\partial p}^T
ight)$$

- Cost scales with number of observation functions
- Solve system Jacobian-transpose
- Small extension for Newton-based codes
- Sensitivity (linear) solves significantly cheaper than (nonlinear) state solves
- Accurate derivatives critical (can't use approximate Jacobian)
- Simulation code must evaluate observation functions & gradients

Transient Embedded Sensitivity Analysis

Forward sensitivities

$$egin{aligned} rac{\partial f}{\partial \dot{u}} \left(rac{\partial \dot{u}}{\partial p}
ight) + rac{\partial f}{\partial u} \left(rac{\partial u}{\partial p}
ight) + rac{\partial f}{\partial p} = 0, & t \in [t_0, t_f], \ rac{\partial u}{\partial p} (t_0) = rac{\partial u_0}{\partial p}, & rac{\partial \dot{u}}{\partial p} (t_0) = rac{\partial \dot{u}_0}{\partial p}, \ rac{\partial v}{\partial p} = \int_{t_0}^{t_f} \left(rac{\partial g}{\partial \dot{u}} rac{\partial \dot{u}}{\partial p} + rac{\partial g}{\partial u} rac{\partial u}{\partial p} + rac{\partial g}{\partial p}
ight) dt + \ \left(rac{\partial h}{\partial \dot{u}} rac{\partial \dot{u}}{\partial p} + rac{\partial h}{\partial u} rac{\partial u}{\partial p} + rac{\partial h}{\partial p}
ight)
ight|_{t=t_0} \end{aligned}$$

- Linear ODE for sensitivities solved alongside original model
- Cost scales with number of parameters
- Hindmarsh et al

Adjoint sensitivities

$$\frac{\partial f}{\partial \dot{u}} \left(\frac{\partial \dot{u}}{\partial p} \right) + \frac{\partial f}{\partial u} \left(\frac{\partial u}{\partial p} \right) + \frac{\partial f}{\partial p} = 0, \quad t \in [t_0, t_f],$$

$$\frac{\partial u}{\partial p} (t_0) = \frac{\partial u_0}{\partial p}, \quad \frac{\partial \dot{u}}{\partial p} (t_0) = \frac{\partial \dot{u}_0}{\partial p},$$

$$\frac{\partial v}{\partial p} = \int_{t_0}^{t_f} \left(\frac{\partial g}{\partial \dot{u}} \frac{\partial \dot{u}}{\partial p} + \frac{\partial g}{\partial u} \frac{\partial u}{\partial p} + \frac{\partial g}{\partial p} \right) dt +$$

$$\left(\frac{\partial h}{\partial \dot{u}} \frac{\partial \dot{u}}{\partial p} + \frac{\partial h}{\partial u} \frac{\partial u}{\partial p} + \frac{\partial h}{\partial p} \right) \Big|_{t=t_f}$$

$$\frac{\partial v}{\partial p} = \int_{t_0}^{t_f} \left(\frac{\partial g}{\partial u} \frac{\partial \dot{u}}{\partial p} + \frac{\partial h}{\partial u} \frac{\partial u}{\partial p} + \frac{\partial h}{\partial p} \right) \Big|_{t=t_f}$$

$$\frac{\partial v}{\partial p} = \int_{t_0}^{t_f} \left(\frac{\partial g}{\partial p}^T - \frac{\partial f}{\partial p}^T \Lambda \right) dt + \frac{\partial h}{\partial p} \Big|_{t=t_f} +$$

$$\frac{\partial u_0}{\partial p}^T \left(\frac{\partial f}{\partial \dot{u}} \Lambda \right) \Big|_{t=t_f}$$

- Linear ODE for adjoint that must be integrated backward in time
- Requires full forward model integration first (or check-pointing)
- Cost scales with number of objective functions
- Petzold et al

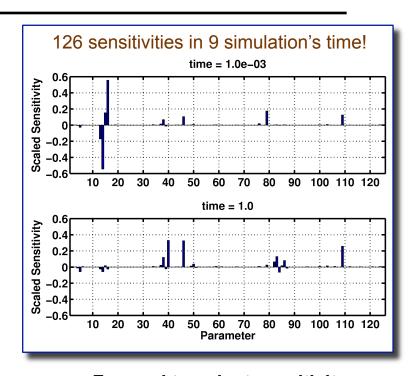
Costs and Benefits for Embedded SA

Costs & Limitations

- Only local analysis
- Requires accurate derivatives
- Adjoint approach requires specialized time integration tools
 - SUNDIALS, Trilinos/Rythmos

Benefits

- Orders-of-magnitude cheaper than global analysis
- More accurate, efficient, and robust than finite-difference-based analysis
- Adjoint cost independent of number of parameters
- Foundation for optimization, error estimation, and UQ



Forward transient sensitivity analysis of a Charon simulation of a radiation-damaged transistor with respect to damage mechanisms using Rythmos & Sacado (Phipps et al).

Embedded Stochastic Galerkin <u>Uncertainty Quantification Methods</u>

Steady-state stochastic problem:

Find
$$u(\xi)$$
 such that $f(u,\xi)=0,\,\xi:\Omega\to\Gamma\subset R^M,$ density ρ

Stochastic Galerkin method (Ghanem, ...):

$$\hat{u}(\xi) = \sum_{i=0}^N u_i \psi_i(\xi)
ightarrow f_i(u_0,\ldots,u_N) = \int_\Gamma f(\hat{u}(y),y) \psi_i(y)
ho(y) dy = 0, \;\; i=0,\ldots,N$$

- Basis polynomials are tensor products of 1-D orthogonal polynomials of degree P
 - Gaussian (Hermite polynomials), Uniform (Legendre), ...
 - Assumes independence of random parameters
- Method generates new coupled spatial-stochastic nonlinear problem

$$0=ar{f}(ar{u})=egin{bmatrix} f_0\ f_1\ dots\ f_N \end{bmatrix}, & ar{u}=egin{bmatrix} u_0\ u_1\ dots\ u_N \end{bmatrix}$$

- Total size grows rapidly with degree or dimension
 - Exponential convergence in degree

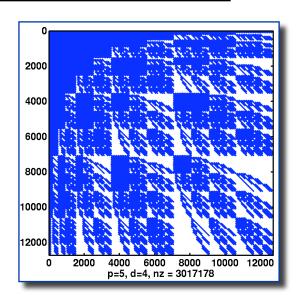
$$N = rac{(M+P)!}{M!P!}$$

Stochastic dimension M	Polynomial degree ${\it P}$	Number of terms $oldsymbol{N}$
5	3	56
	5	252
10	3	286
	5	3003
20	3	1,771
	5	~53,000
100	3	~177,000
	5	~96,000,000

Costs and Benefits of Embedded SG

Costs & Limitations

- R&D needed for effective implementation
 - Automated code transformation
 - Data structures and interfaces
 - Solver algorithms
- Effectiveness in hard problems unknown
- Likely requires significant HPC resources
- Breaks down in presence of discontinuities



Benefits

- AD, quadrature and solver tools under development
 - Trilinos/Stokhos/Sacado
- Potential for significant savings over non-intrusive methods
- Potential for a posteriori error estimates
- Generates a response surface that can be quickly sampled for
 - Probabilities, sensitivities, Bayesian methods (Marzouk et al)
- Extensions
 - Local bases (Le Maitre et al), non-independent parameters (Wan et al), stochastic model reduction (Doostan et al)

Adjoint-Based Embedded UQ Methods

Piecewise 1st order response surface over a grid (Estep, et al)

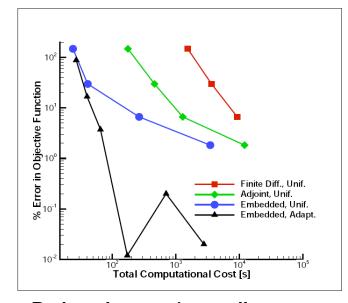
$$egin{align} f(u_0,p_0) &= 0, \;\; v_0 = h(u_0), \;\; \left(rac{\partial f}{\partial u}(u_0,p_0)
ight)^T \Lambda = rac{\partial h}{\partial u}(u_0)^T \ v(p) &pprox v(p_0) - \left(rac{\partial f}{\partial p}(u_0,p_0)(p-p_0)
ight)^T \Lambda \ \end{pmatrix} \end{split}$$

- Leverages adjoint sensitivity tools
- Good performance in small dimensions against Monte Carlo
 - 1-2 orders of magnitude reduction in number of samples/grid points
 - Computing each local response surface is fast
 - Number of grid points grows exponentially in number of dimensions
 - Unknown how it compares to other UQ approaches
- Naturally adaptive
 - A posteriori error estimates and adaptivity
 - No trouble with bifurcations/discontinuities
- Extension for inverse uncertainty problems (Butler & Estep)
- No general purpose tools available

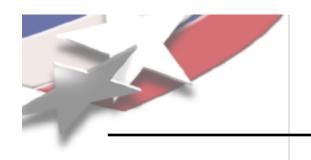
Embedded Optimization

$$\min_{p} h(u,p)$$
 s.t. $f(u,p) = 0$

- Optimization for
 - Model Calibration
 - Validation (computing probability models for inputs of multiscale/fidelity models, e.g., Arnst & Ghanem)
- Nested Analysis And Design (non-intrusive to semiembedded)
 - Nonlinearly eliminate constraints
 - Compute reduced sensitivities using finite differences or embedded sensitivity techniques
 - Linear convergence
 - Small to medium parameter spaces O(1-100)
- Simultaneous Analysis and Design (embedded)
 - Solve optimization and constraints simultaneously
 - Eliminates constraint solves away from optimum
 - Built on the same tools as embedded sensitivities
 - Super-linear to quadratic convergence
 - First to second derivatives
 - Scalable to very large parameter spaces
 - Orders-of-magnitude more efficient than NAND
- R&D necessary for challenging problems
 - Globalizations
 - Non-smooth systems
 - KKT solvers for 2nd-derivative-based methods



Reduced-space (super-linear SAND) optimization of flow and transport using Trilinos/MOOCHO. Courtesy of B. van Bloemen Waanders, SNL.



A Path Forward

- Significant R&D is needed for embedded methods to impact your applications
- Application codes need to be "born" with these technologies
 - Retrofitting is difficult and almost never happens
- With the right hooks, this is feasible
 - High-level application code interfaces
 - Residuals, Jacobians, objective/observation functions, parameter deriv's, ...
 - Automatic differentiation
 - Tools to implement those interfaces

High-Level Application Code Interfaces

- Requirements for many embedded algorithms are simple
 - Set state values (u, du/dt)
 - Set parameter values (p)
 - Compute application residual (f)
 - Compute observation/objective functions (g, h)
 - Compute derivatives (df/du, df/dp, ...)
- Trilinos provides a unified application interface for all of its embedded algorithms
 - Thyra::ModelEvaluator
 - Can provide decorators/wrappers for
 - SG residuals/Jacobians
 - Reduced sensitivities
 - Integration with Dakota
- Computing derivatives is usually the difficult part

Automatic Differentiation Provides Tools for Implementing Embedded Algorithm Interfaces

- Derivatives are critical for many embedded algorithms
 - Must be accurate and efficient
- Automatic differentiation provides analytic derivatives with minimal code development/maintenance
 - Derivatives at operation-level known, combined with Chain Rule
 - Any kind of first or higher-order derivative
 - SG polynomials, intervals, ...
 - Automatically verified to be correct

- Fortran -- Source transformation -- OpenAD/ADIFOR
- C++ -- Operator overloading, templating -- Trilinos/Sacado
- Demonstrated effectiveness, efficiency, and scalability for large-scale simulations
- Prescription for applying AD simple
 - Separate parts of the code to be differentiated from others (e.g., element residual fill) with well-defined interfaces
 - Fortran apply source transformation to those parts
 - C++ template those parts for operator overloading

Concluding Remarks

- Potentially tremendous computational cost savings with embedded methods
- Significant algorithms R&D is necessary to realize those savings in applications
- Codes must be "born" with these technologies to reap their benefits
 - High-level application code interfaces
 - Automatic differentiation to implement those interfaces
 - Separate out differentiable pieces
 - Template those pieces (for C++ applications)
- Ideas are complementary to Dakota

References

Sensitivity Analysis

- A. Hindmarsh,, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. "Sundials: Suite of nonlinear and differential/algebraic equation solvers." ACM Trans. Math. Softw. 31(3): 363–396, 2005.
- E. Phipps, R. Bartlett, D. Gay, and R. Hoekstra. "Large-Scale Transient Sensitivity Analysis of a Radiation-Damaged Bipolar Junction Transistor via AD." Advances in Automatic Differentiation, C. Bischof, M. Bucker, P. Hovland, U. Naumann, and J. Utke, eds., Lecture Notes in Computational Science and Engineering, 2008.

Uncertainty Quantification

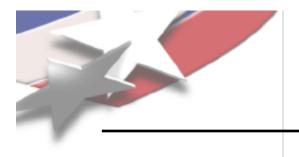
- B. Debusschere, H. Najm, P. Pebay, O. Knio, R. Ghanem, and O. L. Maitre. "Numerical challenges in the use of polynomial chaos representations for stochastic processes." SIAM J Sci Comput, 26(2): 698–719, 2004.
- D. Estep and D. Neckels. "Fast and reliable methods for determining the evolution of uncertain parameters in differential equations." *Journal of Computational Physics*, 213: 530–556, 2005.
- H. Matthies and A. Keese. "Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations." Comput. Methods Appl. Mech. Engrg. 194: 1295–1331, 2005.

Optimization

 B. van Bloemen Waanders, R. Bartlett, K. Long, P. Boggs, and A. Salinger. "Large-Scale Non-Linear Programming for PDE Constrained Optimization." Technical Report SAND2002-3198, Sandia National Laboratories, October, 2002.

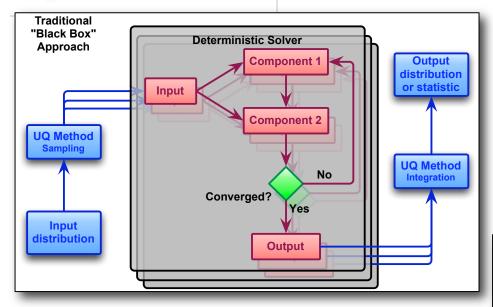
Software

- Trilinos (Rythmos, MOOCHO, Sacado, Stokhos, ...): http://trilinos.sandia.gov
- OpenAD: http://www.autodiff.org
- SUNDIALS: https://computation.llnl.gov/casc/sundials/main.html



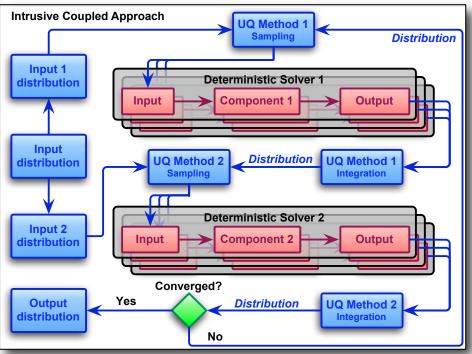
Auxiliary Slides

Coupled System Embedded UQ Research



- Coupled systems generate large dimensional stochastic spaces
 - 10 for component 1 + 10 for component 2 = 20 dimensions
 - Cost grows rapidly with dimension
- Inverted approach breaks growth
 - 1-dimensional interface between components
 - 2 11-dimensional UQ problems

- Invert layering of UQ around system simulation
 - Apply UQ to each component separately
 - Stochastic coupled solver technology
- Potentially orders of magnitude savings
 - Heterogeneous UQ
 - Stochastic dimension reduction



What is Automatic Differentiation (AD)?

- Technique to compute analytic derivatives without hand-coding the derivative computation
- How does it work -- freshman calculus
 - Computations are composition of simple operations (+, *, sin(), etc...) with known derivatives
 - Derivatives computed line-by-line, combined via chain rule
- Derivatives accurate as original computation
 - No finite-difference truncation errors
- Provides analytic derivatives without the time and effort of hand-coding them

$$y = \sin(e^{x} + x \log x), \quad x = 2$$

$$x \leftarrow 2 \qquad \frac{dx}{dx} \leftarrow 1$$

$$t \leftarrow e^{x} \qquad \frac{dt}{dx} \leftarrow t \frac{dx}{dx}$$

$$u \leftarrow \log x \qquad \frac{du}{dx} \leftarrow \frac{1}{x} \frac{dx}{dx}$$

$$v \leftarrow xu \qquad \frac{dv}{dx} \leftarrow u \frac{dx}{dx} + x \frac{du}{dx}$$

$$v \leftarrow t + v \qquad \frac{dw}{dx} \leftarrow \frac{dt}{dx} + \frac{dv}{dx}$$

$$v \leftarrow \sin w \qquad \frac{dy}{dx} \leftarrow \cos(w) \frac{dw}{dx}$$

$$0.991 \qquad -1.188$$

AD

AD Takes Three Basic Forms

$$x \in \mathbf{R}^n, f: \mathbf{R}^n \to \mathbf{R}^m$$

• Forward Mode:

$$(x,\;V) \longrightarrow \left(f,\;rac{\partial f}{\partial x}V
ight)$$

- Propagate derivatives of intermediate variables w.r.t. independent variables forward
- Directional derivatives, tangent vectors, square Jacobians, $\partial f/\partial x$ when $m\geq n$
- Reverse Mode:

$$(x,\;W) \longrightarrow \left(f,\;W^Trac{\partial f}{\partial x}
ight)$$

- Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
- Gradient of a scalar value function with complexity $\approx 4 \text{ ops}(f)$
- Gradients, Jacobian-transpose products (adjoints), $\partial f/\partial x$ when n>m
- Taylor polynomial mode:

$$f(x(t)) = \sum_{k=0}^d x_k t^k \longrightarrow \sum_{k=0}^d f_k t^k = f(x(t)) + O(t^{d+1}), \;\; f_k = rac{1}{k!} rac{d^k}{dt^k} f(x(t))$$

Basic modes combined for higher derivatives:

$$rac{\partial}{\partial x}\left(rac{\partial f}{\partial x}V_1
ight)V_2, \;\;W^Trac{\partial^2 f}{\partial x^2}V, \;\;rac{\partial f_k}{\partial x_0}$$

Our AD Research is Distinguished by Tools & Approach for Large-Scale Codes

- Many AD tools and research projects
 - Most geared towards Fortran (ADIFOR, OpenAD)
 - Most C++ tools are slow (ADOL-C)
 - Most applied in black-box fashion
- Sacado: Operator overloading AD tools for C++ applications
 - ✓ Multiple highly-optimized AD data types
 - √ Transform to template code & instantiate on Sacado AD types
 - ✓ Apply AD only at the "element level"

- Directly impacting QASPR through Charon
 - ✓ Analytic Jacobians and parameter derivatives

Basic Sacado C++ Example

```
#include "Sacado.hpp"
// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
  ScalarT r = c*std::log(b+1.)/std::sin(a);
  return r;
int main(int argc, char **argv) {
  double a = std::atan(1.0);
                                                     // pi/4
  double b = 2.0;
  double c = 3.0;
  int num_deriv = 2;
                                                     // Number of independent variables
  // Fad objects
  Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
  Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
  Sacado::Fad::DFad<double> cfad(c);  // Passive variable
Sacado::Fad::DFad<double> rfad;  // Result
  // Compute function
  double r = func(a, b, c);
  // Compute function and derivative with AD
  rfad = func(afad, bfad, cfad);
  // Extract value and derivatives
  double r_ad = rfad.val(); // r
  double drda_ad = rfad.dx(0); // dr/da
  double drdb_ad = rfad.dx(1); // dr/db
```

Efficiency of AD in Charon

Set of N hypothetical chemical species:

$$2X_j
ightleftharpoons X_{j-1} + X_{j+1}, \ \ j=2,\ldots,N-1$$

Steady-state mass transfer equations:

$$abla^2 Y_j + \mathrm{u} \cdot
abla Y_j = \dot{\omega}_j, \;\; j=1,\ldots,N-1 \ \sum_{j=1}^N Y_j = 1$$

Forward mode AD

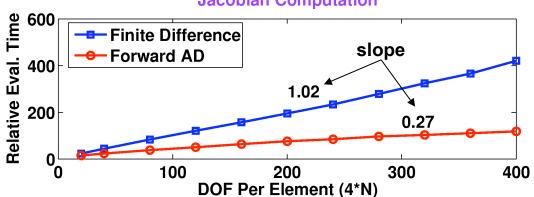
- Faster than FD
- Better scalability in number of **PDEs**
- Analytic derivative
- Provides Jacobian for all Charon physics

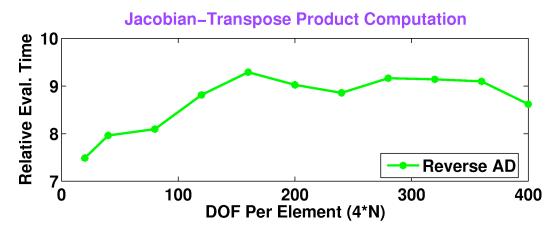
Reverse mode AD

- Scalable adjoint/gradient $J^T w = \nabla(w^T f(x))$

Efficiency of the element-level derivative computation

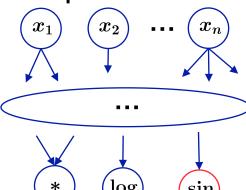
Jacobian Computation

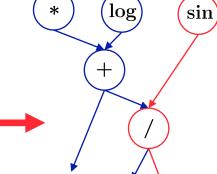




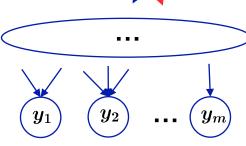
Verification of Automatic Differentiation

- Verification of the AD tools
 - Unit-test with respect to known derivatives
 - Composite tests
 - Compare to other tools
 - Compare to hand-derived
 - Compare to finite differences
- Verification of AD in application code
 - Compiler drastically simplifies this
 - All of the standard hand-coded verification techniques
 - Compare to finite differences
 - Nonlinear convergence





Compiler type mechanism will not allow breaking the chain from independent to dependent variables



Dependent Variables

Charon Drift-Diffusion Formulation with Defects

Current Conservation for eand h+

$$\frac{\partial n}{\partial t} - \nabla \cdot J_n = -R_n(\psi, n, p, Y_1, \dots, Y_N), \quad J_n = -n\mu_n \nabla \psi + D_n \nabla n$$

$$\frac{\partial p}{\partial t} + \nabla \cdot J_p = -R_p(\psi, n, p, Y_1, \dots, Y_N), \quad J_p = -p\mu_p \nabla \psi - D_p \nabla p$$

Defect Continuity
$$\frac{\partial Y_i}{\partial t} + \nabla \cdot J_{Y_i} = -R_{Y_i}(\psi, n, p, Y_1, \dots, Y_N), \quad J_{Y_i} = -\mu_i Y_i \nabla \psi - D_i \nabla Y_i$$

Recombination/ generation source terms

 R_{X}

Include electron capture and hole capture by defect species and reactions between various defect species

Electron emission/ capture

$$Z^i \leftrightarrow Z^{i+1} + e^-$$

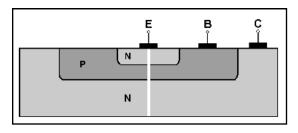
$$R_{[Z^i o Z^{i+1}+e^-]} \propto \sigma_{[Z^i o Z^{i+1}+e^-]} Z^i \exp\left(rac{\Delta E_{[Z^i o Z^{i+1}+e^-]}}{kT}
ight)$$

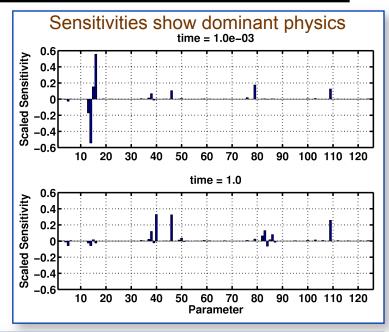
Cross section

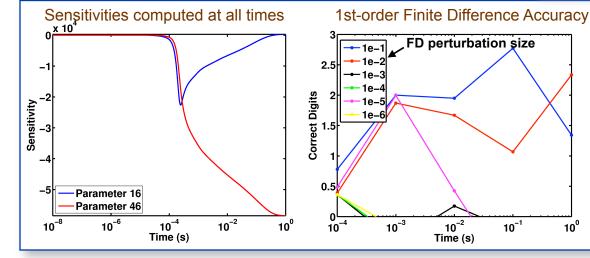
Rythmos Sensitivity Analysis Capability Demonstrated on the QASPR Simple Prototype*

*Phipps et al

- **Bipolar Junction Transistor**
- Pseudo 1D strip (9x0.1 micron)
- Full defect physics
- 126 parameters





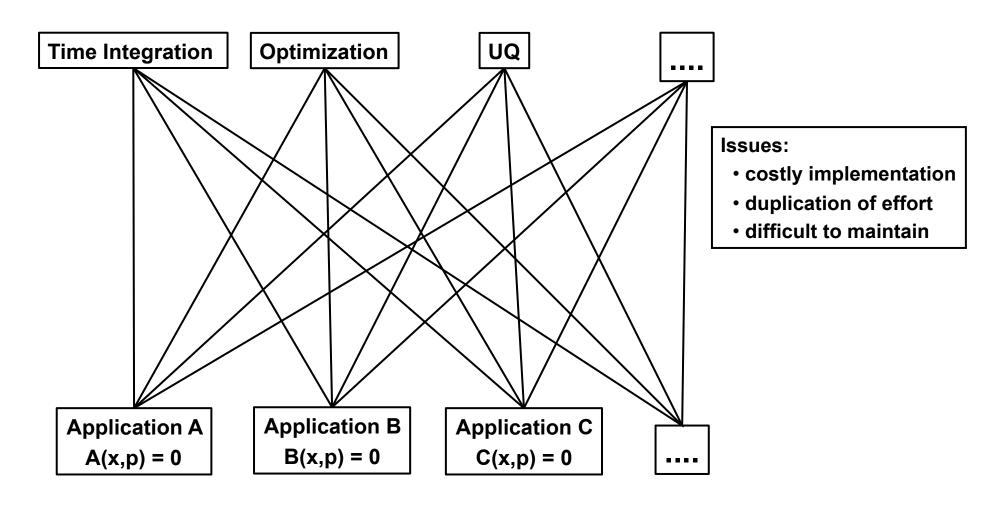


Comparison to FD:

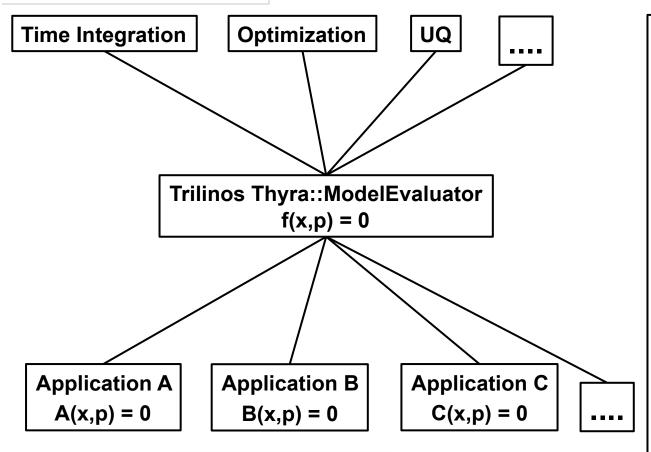
- Sensitivities at all time points
- More accurate
- More robust
- 14x faster!

10°

Interfacing Abstract Numerical Algorithms (ANA) To Applications



Interfacing Abstract Numerical Algorithms (ANA) To Applications



- Input requirements:
 - State x
 - Parameters p
- Output options:
 - Residual f
 - Jacobian df/dx
 - Adjoint df/dx^T
 - Parameter derivs df/dp
 - Observation funcs g
 - ...
- Decorators:
 - SG residuals/Jacobians
 - State elimination
 - Reduced sensitivities
 - ...

